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Functional impulsive fractional
differential inclusions involving

the Caputo-Hadamard derivative

Aida Irguedi, Samira Hamani

Abstract. This paper establishes sufficient conditions for the exis-
tence of solutions to fractional impulsive functional differential inclu-
sions, utilizing fixed-point theorems for multivalued mappings.

1. Introduction

In this paper, we investigate the existence of solutions for a class of frac-
tional impulsive differential inclusions:

(1) CHDry(t) ∈ F (t, yt), t ∈ J = [a, T ], t ̸= tk, a > 0, k = 1, . . . ,m;

(2) ∆y |t=tk= Ik(y(t
−
k )), t = tk, k = 1, . . . ,m;

(3) y(t) = ϕ(t), t ∈ (a− r, a],

where CHDr is the Caputo-Hadamard fractional derivative, 0 < r ≤ 1 and
F : J ×C([a− r, a],R) → P(R) is a multivalued map, ϕ ∈ C([a− r, a],R) is
given function, P(R) is the family of all nonempty subsets of R, Ik : R → R,
k = 1, . . . ,m, are continuous functions, a = t0 < t1 < · · · < tm < tm+1 = T ,
∆y|t=tk = y(t+k ) − y(t−k ), y(t

+
k ) = lim

ε→0+
y(tk + ε) and y(t−k ) = lim

ε→0−
y(tk + ε)

represent the right and left limits of y(t) at t = tk, k = 1, . . . ,m.
For any continuous function y defined on [a − r, T ] and any t ∈ J , we

denote by yt the element of Cr := C([a− r, a],R), defined by

yt(θ) = y(t+ θ), θ ∈ [a− r, a].
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104 Fractional differential inclusions

Hence, yt(·) represents the history of the state from time t − r up to the
present time t. Also, Cτ is endowed with the norm

∥ϕ∥Cτ := sup
{
|ϕ(θ)| : a− τ ≤ θ ≤ a

}
.

Fractional calculus is one of the new fields of current investigation. In
particular, fractional differential operators are used in a much better way
than ordinary differential operators to gives some models of some physical
phenomena. It has been noted that much of the work on this subject is
focused on the fractional differential equations of Riemann-Liouville and
Caputo.

The Hadamard fractional derivative, introduced in 1892 [23], is another
type of fractional derivative that appears side by side with the Riemann-
Liouville and Caputo derivatives in the literature, which varies from the
previous ones in the type of derivative that contains the arbitrary logarithmic
function. Further details can be found in [1–3,6,30,32,33]. Next, Jarad et al,
proposed a Caputo-type modification of the Hadamard fractional derivative
in [31].

In [19], the authors studied an initial value problem (IVP) fractional func-
tional and neutral functional differential equations with Riemman-Liouville
derivative and infnite delay. Recently, some researchers have concentrated
on fractional impulsive differential equations with Hadamard and Caputo-
Hadamard derivatives (see [13,14,16,17,25,26] and references therein). Ini-
tial value problems for fractional impulsive functional and neutral functional
differential equations and inclusions with Caputo-Hadamard derivative were
investigated in [8, 9, 15,25].

The rest of this paper is organized as follows. In Section 2 we present some
basic definitions and preliminary results that will be used to prove our main
results. In Section 3 we give two result for the problem (1)–(3). The first is
based on the nonlinear alternative of Leray-Schauder when the right hand
side is convex and the second result is based on a fixed point theorem due
to Covitz and Nadler [21], when the right hand side is not convex. Finally,
an example is given to illustrate our results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
that will be used in the rest of this paper.

Let C(J,R) be the Banach space of all continuous functions from J into
R with the norm

∥y∥∞ := sup
{
|y(t)| : t ∈ J

}
.

Let L1(J,R) be the Banach space of functions y : J → R that are Lebesgue
integrable with norm

∥y∥L1 =

∫ T

a
|y(t)|dt.
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Further, let AC([a, b], R) be the space of functions y : J → R, which are
absolutely continuous, (X, ∥ · ∥) is a Banach space and:

Pcl(X) =
{
Y ∈ P(X) : Y is closed

}
,

Pb(X) =
{
Y ∈ P(X) : Y is bounded

}
,

Pcp(X) =
{
Y ∈ P(X) : Y is compact

}
,

Pcp,c(X) =
{
Y ∈ P(X) : Y is compact and convex

}
.

A multivalued map G : X → P(X) is convex (closed) valued if G(X)
is convex (closed) for all x ∈ X. A multivalued map G is bounded on
bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e.,
supx∈B

{
sup{|y| : y ∈ G(x)}

}
). G is called upper semi-continuous (u.s.c.)

on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of
X, and for each open set N of X containing G(x0), there exists an open
neighborhood N0 of x0 such that G(N0) ⊂ N . G is said to be completely
continuous if G(B) is relatively compact for every B ∈ Pb(X).

If the multivalued map G is completely continuous with nonempty com-
pact values, then G is u.s.c. if and only if G has a closed graph (i.e.,
xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point
if there is x ∈ X such that x ∈ G(x). The fixed point set of the multivalued
operator G will be denoted by FixG. A multivalued map G : J → Pcl(R) is
said to be measurable if for every y ∈ R, the function

t→ d(y,G(t)) = inf
{
|y − z| : z ∈ G(t)

}
is measurable.

Definition 1. A multivalued map F : J×R → P(R) is said to be Carathéodory
if:

(1) t→ F (t, u) is measurable for each u ∈ R.
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ J.

For each y ∈ AC(J,R), define the set of selections of F by

SF,y =
{
v ∈ L1([a, T ],R) : v(t) ∈ F (t, y(t)) a.e t ∈ [a, T ]

}
.

Let (X, d) be a metric space induced from the normed space (X, ∥ · ∥).
Consider Hd : P(X)× P(X) → R+ ∪ {∞} given by

Hd(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
.

Definition 2. A multivalued operator N : X → Pcl(X) is called
(1) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

(2) a contraction if and only if it is γ-Lipschitz with γ < 1.
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Theorem 1 (Nonlinear alternative of Leray Schauder). Let X be a Banach
space and C a nonempty closed convex subset of X. Let U a a nonempty con-
vex subset of C with 0 ∈ U and T : Ū → Pcp,c(X) is a upper semicontinuous
compact map. Then either

(i) T has a fixed point in U , or
(ii) there exist u ∈ ∂U and λ ∈ [0, 1] for which u ∈ λT (u).

Lemma 1 ([21]). Let (X, d) be a complete metric space. If N : X → Pcl(X)
is a contraction, then FixN ̸= ∅.

For more details on multivalued maps see the following references: Aubin
and Cellina [10], Aubin and Frankowska [11], Deimling [22] and Castaing
and Valadier [20].

Definition 3 ([30]). The Hadamard fractional integral of order r > 0 for a
function ρ ∈ L1(J,R) is defined by

Irρ(t) =
1

Γ(r)

∫ t

a

(
log

t

s

)r−1 ρ(s)

s
ds,

provided the integral exists.

Definition 4 ([30]). The Hadamard fractional derivative of order r > 0
applied to the function ρ ∈ ACn

δ (J,R) is defined by

(Dr
aρ)(t) = δn(In−r

a ρ)(t),

where n− 1 < r < n, n = [r] + 1, and [r] is the integer part of r.

Lemma 2 ([5]). Let y ∈ ACn
δ (J,R) or Cn

δ (J,R). Then

Ir(HCDry)(t) = y(t)−
n−1∑
k=0

δky(a)

k!

(
log

t

a

)k

.

Definition 5 ([30]). The Hadamard fractional derivative of order r > 0
applied to the function ρ ∈ ACn

δ (J,R) is defined by

(Dr
aρ)(t) = δn(In−r

a ρ)(t),

where n− 1 < r < n, n = [r] + 1, and [r] is the integer part of r.

Lemma 3 ([5]). Let y ∈ ACn
δ (J,R) or Cn

δ (J,R). Then

Ir(HCDry)(t) = y(t)−
n−1∑
k=0

δky(a)

k!

(
log

t

a

)k

.
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3. Main result

Consider the following space

Ω =


y : [a− τ, T ] → R, y ∈ ACδ((tk, tk+1],R), k = 1, . . . ,m,
and there exist y(t+k ) and y(t−k ), k = 1, . . . ,m,
with y(t−k ) = y(tk), y(t) = ϕ(t), t ∈ (a− r, a]

 .

This space is a Banach space with the norm

∥y∥Ω = sup
t∈J

|y(t)|.

Set J ′ = J \ {t1, . . . , tm}.

Definition 6. A function y ∈ Ω is said to be a solution of (1)–(3) if there
exists a function ν ∈ L1([a, T ],R) with ν(t) ∈ F (t, yt) for each t ∈ J , such
that CHDry(t) = ν(t) on J ′, and the conditions (2)–(3).

Lemma 4. Let 0 < r ≤ 1 and let σ : J → R be continuous. A function y is
a solution of the fractional integral equation

(4) y(t) =



ϕ(t), if t ∈ [a− r, a]

1

Γ(r)

∫ t

a

(
log

t

s

)r−1

σ(t)
ds

s
, if t ∈ [a, t1],

1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

f(t, yt)
ds

s

+
1

Γ(r)

∫ t

ti

(
log

t

s

)r−1

σ(t)
ds

s

+

k∑
i=1

Ii(y(t
−
i )), if t ∈ (tk, tk+1].

where k = 1, . . . ,m, if y is a solution of the fractional IVP

(5) CHDr
tk
y(t) = σ(t), for each t ∈ Jk,

(6) ∆y|t=tk = Ik(y(t
−
k )), k = 1, . . . ,m,

(7) y(t) = ϕ(t), t ∈ (a− τ, a].

Proof. Let y be a solution of (5)–(7).
For t ∈ [a, t1], from Lemma 3, we have

y(t) = ϕ(a) +
1

Γ(r)

∫ t

a

(
log

t

s

)r−1

σ(t)
ds

s
,
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then

y(t+1 ) = ϕ(a) +
1

Γ(r)

∫ t1

a

(
log

t1
s

)r−1

σ(s)
ds

s
+ I1(y(t

−
1 )).

For t ∈ (t1, t2], by applying Lemma 3, we have

y(t) = y(t+1 ) +
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1

σ(s)
ds

s

= ∆y|t=t1 + y(t−1 ) +
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1

σ(s)
ds

s

= ϕ(a) + I1(y(t
−
1 )) +

1

Γ(r)

∫ t1

a

(
log

t1
s

)r−1

σ(s)
ds

s

+
1

Γ(r)

∫ t

t1

(
log

t

s

)r−1

σ(s)
ds

s
.

If t ∈ (t2, t3], we have

y(t) = y(t+2 ) +
1

Γ(r)

∫ t

t2

(
log

t

s

)r−1

σ(s)
ds

s

= ∆y|t=t2 + y(t−2 ) +
1

Γ(β)

∫ t

t2

(
log

t

s

)r−1

σ(s)
ds

s

= I2(y(t
−
2 )) + I1(y(t

−
1 )) +

1

Γ(r)

∫ t1

a

(
log

t1
s

)r−1

σ(s)
ds

s

+
1

Γ(r)

∫ t2

t1

(
log

t2
s

)r−1

σ(s)
ds

s

+
1

Γ(r)

∫ t

t2

(
log

t

s

)r−1

σ(s)
ds

s
.

For t ∈ (tk, tk+1], from Lemma 3, we can obtain

y(t) =
1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

σ(s)
ds

s

+
1

Γ(r)

∫ t

ti

(
log

t

s

)r−1

σ(s)
ds

s

+

k∑
i=1

Ii(y(t
−
i )). □

Further, we assume that F is a compact and convex valued multivalued
map.
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Theorem 2. Assume the following hypotheses hold:

(H1) The function F : J × Cτ → Pcp,c(R) is a Carathéodory multivalued
map.

(H2) There exist a function p ∈ C (J,R+) and a continuous non-decreasing
function ψ : [0,∞) → (0,∞), such that

∥F (t, u)∥P = sup{|ν|, ν ∈ F (t, u)} ≤ p(t)ψ(|u|),
for each (t, u) ∈ (J,Cτ ).

(H3) There exists a continuous non-decreasing function ψ∗ : [0,∞) →
(0,∞) such that

∥Ik(u)∥ ≤ ψ∗(|u|), for each u ∈ R.

(H4) There exists a a constant M > 0, where pf = supt∈J |p(t)|, such that

(8)
M

ψ(M)

(
log

T

a

)r

(m+ 1)pf

Γ(r + 1)
+mψ∗(M)

> 1.

(H5) There exists l ∈ L1(J,R+), such that

Hd(F (t, u), F (t, ū)) ≤ l(t)|u− ū|Cτ , for every u, ū ∈ Cτ .

Then the IVP (1)–(3) has at least one solution on [a− τ, T ].

Proof. Transform the problem (1)–(3) into a fixed point problem. Consider
the multivalued operator N : Ω → Ω is defined by

N(y) =


ρ ∈ Ω : ρ(t) =



ϕ(t), if t ∈ [a− τ, T ]),

1

Γ(r)

k∑
i=1

∫ ti

ti−1

(
log

ti
s

)r−1

ν(s)
ds

s

+
1

Γ(r)

∫ t

ti

(
log

t

s

)r−1

ν(s)
ds

s

+

k∑
i=1

Ii(y(t
−
i )), if t ∈ [tk, tk+1], for ν ∈ SF,y.

Clearly, from Lemma 4, the fixed points of the operator N are solutions
of the problem (1)–(3).

We shall show that N satisfies the assumptions of the nonlinear alterna-
tives of Leray-Shauder.

The proof will be given in several steps.
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Step 1. N(y) is convex for each y ∈ Ω.
Indeed if ρ1, ρ2 ∈ N(y), then there exists ν1, ν2 ∈ SF,y such that for each
t ∈ J , we have

ρi(t) =
1

Γ(r)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)r−1

νi(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

νi(s)
ds

s
+

∑
a<tk<t

Ik
(
y
(
t−k

))
, i = 1, 2.

Let 0 ≤ λ ≤ 1. Then, for each t ∈ J , we have

(λρ1 + (1− λ)ρ2) (t)

=
1

Γ(r)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)r−1

[λν1 + (1− λ)ν2] (s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

[λν1 + (1− λ)ν2] (s)
ds

s
+

∑
a<tk<t

Ik
(
y
(
t−k

))
.

Since SF,y is convex (because F has convex values), we have

λρ1 + (1− λ)ρ2 ∈ N(y).

Step 2. N maps bounded sets into bounded sets in Ω.
Let Bη = {y ∈ Ω : ∥y∥∞ ≤ η} be a bounded set in Ω and y ∈ Bη. Then for
each ρ ∈ N(y), there exists ν ∈ SF,y such that, for each t ∈ J , we have

ρ(t) =
1

Γ(r)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)r−1

ν(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

ν(s)
ds

s
+

∑
a<tk<t

Ik
(
y
(
t−k

))
.

By (H2) and (H3), we have

|ρ(t)| ≤ 1

Γ(r)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)r−1

|ν(s)|ds
s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

|ν(s)|ds
s

+
∑

a<tk<t

|Ik(y(t−k ))|

≤ 1

Γ(r + 1)

∑
a<tk<t

(
log

tk
tk−1

)r

pfψ (∥y∥∞)

+
1

Γ(r + 1)

(
log

t

tk

)r

pfψ(∥y∥∞) +mψ∗(∥y∥∞)

≤
(m+ 1)pf
Γ(r + 1)

(
log

T

a

)r

ψ(∥y∥∞) +mψ∗(∥y∥∞).
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Thus

∥ρ∥∞ ≤
(m+ 1)pf
Γ(r + 1)

(
log

T

a

)r

ψ(η) +mψ∗(η) := ℓ.

Step 3. N maps bounded sets into equicontinuous sets of Ω.
Let τ1, τ2 ∈ J, τ1 < τ2, and let y ∈ Bη be a bounded set of Ω as in Step 2
and ρ ∈ N(y). Then there exists ν ∈ Bη such that

|ρ (τ2)− ρ (τ1)| ≤
1

Γ(r)

∑
τ1<tk<τ2

∫ tk

tk−1

(
log

tk
s

)r−1

ν(s)
ds

s

+
1

Γ(r)

∫ τ2

τ1

(
log

τ2
s

)r−1
ν(s)

ds

s

+
1

Γ(r)

∫ τ1

tk

[(
log

τ2
s

)r−1
−
(
log

τ1
s

)r−1
]
ν(s)

ds

s

+
∑

τ1<tk<τ2

Ik
(
y
(
t−k

))
.

As τ1 → τ2, the right hand side of the above inequality tends to zero. As
a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we
can conclude that N is completely continuous.

Step 4. N has a closed graph.
Let ρn → ρ∗ and yn → y∗. We will prove that ρ∗ ∈ N (y∗). Now ρn ∈ N (yn)
implies there exists νn ∈ SF,yn , such that for each t ∈ J

ρn(t) =
1

Γ(r)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)r−1

νn(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

νn(s)
ds

s
+

∑
a<tk<t

Ik
(
y
(
t−k

))
.

We must show that there exists ν∗ ∈ SF,y∗ , show that, for each t ∈ J ,

ρ∗(t) =
1

Γ(r)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)r−1

ν∗(s)
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

ν∗(s)
ds

s
+

∑
a<tk<t

Ik
(
y
(
t−k

))
.

Since F (t, ·) is upper semi-continuous, then for every ϵ > 0, there exists a
natural number n0(ϵ), for every n ≥ n0, we have

νn(t) ∈ F (t, yn,t) ⊂ F (t, y∗,t)) + ϵB(0, 1), a.e. t ∈ J.
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Since F (·, ·) has compact values, then there exists a subsequence νnm(·) such
that

νnm(·) → ν∗(·), as m→ ∞
and

ν∗(t) ∈ F (t, y∗,t) , a.e. t ∈ J.

For every w ∈ F (t, y∗,t), we have

|νnm(t)− ν∗(t)∥ ≤ |νnm(t)− w|+ |w − ν∗(t)|.

Then
|νnm(t)− ν∗(t)| ≤ d(νnm(t), F (t, y∗(t)).

We obtain an analogous relation by interchanging the roles of νnm and ν∗,
and it follows that

|νnm(t)− ν∗(t)| ≤ Hd(F (t, (yn)t), F (t, (y∗)t) ≤ l(t)∥(yn)t − (y∗)t∥Cτ .

Then

|ρnm(t)− ρ∗(t)| ≤
1

Γ(r)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)r−1

|νnm(s)− ν∗(s)|
ds

s

+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

|νnm(s)− ν∗(s)|
ds

s

+
∑

a<tk<t

|Ik(ynm(t
−
k ))− Ik(y∗(t

−
k ))|

≤ m

Γ(r + 1)

(
log

T

a

)r ∫ T

a
l(s)ds∥ynm − y∗∥∞

+
1

Γ(r + 1)

(
log

T

a

)r ∫ T

a
l(s)ds∥ynm − y∗∥∞

+
∑

a<tk<t

|Ik(ynm(t
−
k ))− Ik(y∗(t

−
k ))|.

Hence

∥ρnm(t)− ρ∗(t)∥∞ ≤ m+ 1

Γ(r + 1)

(
log

T

a

)r ∫ T

a
l(s)ds∥ynm − y∗∥∞

+
∑

a<tk<t

∣∣Ik (ynm

(
t−k

))
− Ik

(
y∗

(
t−k

))∣∣ → 0, as m→ ∞.

Step 5. A priori bounds on solutions.
Let y ∈ Ω be such that y ∈ λN(y) with λ ∈ (0, 1]. Then there exists ν ∈ SF,y
for each t ∈ J , we have

|y(t)| ≤ 1

Γ(r)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)r−1

p(s)ψ(|ys|)
ds

s
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+
1

Γ(r)

∫ t

tk

(
log

t

s

)r−1

p(s)ψ(|ys|)
ds

s
+

∑
a<tk<t

ψ∗(|y(t−k )|)

≤
(m+ 1)pf
Γ(r + 1)

(
log

T

a

)r

ψ (∥y∥∞) +mψ∗ (∥y∥∞) .

Thus
∥y∥∞

(m+ 1)
(
log T

a

)r
pf

Γ(r + 1)
ψ (∥y∥∞) +mψ∗ (∥y∥∞)

≤ 1.

Then, by condition (8), there exists M > 0 such that ∥y∥∞ ̸=M .
Let U = {y ∈ Ω : ∥y∥∞ < M}. The operator N : ŪP(Ω) is upper semi-

continuous and completely continuous. From the choice of U , there is no
y ∈ ∂U such that y ∈ λN(y) for some λ ∈ (0, 1]. As a consequence of the
nonlinear alternative of Leray-Schauder, we deduce that N has a fixed point
y ∈ Ū , which is a solution of the problem (1)–(3).

This completes the proof. □

3.1. The nonconvex case. We present now a result for the problem
(1)–(2) with a nonconvex valued right hand side. Our consideration are
based on the fixed point theorem for contraction multivalued maps given by
Covitz and Nadler [21]. The proof will be given in two steps.

Theorem 3. Assume (H5) and the following hypotheses hold:
(H6) F : J × Cτ → P(R) has the property that F (·, u) : J → P(R) is

measurable, conx and integrably bounded for each u ∈ R.
(H7) There exists a constant l∗ > 0, let l = supt∈J{l(t)} such that

|Ik(u)− Ik(ū)| ≤ l∗|u− ū|, for each u, ū ∈ R,

if

(9)

(m+ 1)l

(
log

T

a

)α

Γ(α+ 1)
+ml∗

 < 1,

then the VIP (1)–(3) has at least one solution on [a− τ, T ].

Proof.
Step 1. N(y) ∈ P(Ω) for each yΩ.
Indeed, let {yn}n≥1 ∈ N(y) be such that yn → ȳ in C([a − τ, T ],R), and
there exists νn ∈ SF,y such that, for each t ∈ J ,
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yn(t) =
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)α−1

νn(s)
ds

s

+
1

Γ(α)

∫ t

tk

(
log

t

s

)α−1

νn(s)
ds

s
+

∑
a<tk<t

Ik(y(t
−
k )).

Using the fact that F has compact values and from (H5), we may pass
to a subsequence if necessary to get that νn converges weakly to some
ν ∈ L1

w(J,R) (the space endowed with the weak topology). An applica-
tion of Mazur’s theorem implies that {(νn)} converges strongly to ν and
hence νSF,y. Then for each t ∈ J ,

yn(t) → ȳ(t) =
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)α−1

ν(s)
ds

s

+
1

Γ(α)

∫ t

tk

(
log

t

s

)α−1

ν(s)
ds

s
+

∑
a<tk<t

Ik(y(t
−
k )).

So, ȳ ∈ N(y).

Step 2. There exist γ < 1 such that

Hd(N(y), N(ȳ)) ≤ γ∥y − ȳ∥∞
for each y, ȳ ∈ Ω.
Then, there exists ν1 ∈ F (t, yt) for each such t ∈ J

ρ1(t) =
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)α−1

ν1(s)
ds

s

+
1

Γ(α)

∫ t

tk

(
log

t

s

)α−1

ν1(s)
ds

s
+

∑
a<tk<t

Ik(y(t
−
k )).

From (H5) it follows that

Hd(F (t, yt), F (t, ȳt)) ≤ l(t)|yt − ȳt|.

Hence, there exists w ∈ F (t, ȳt). such that

|ν1(t)− w| ≤ l(t)|yt − ȳt|, t ∈ J.

Consider U : J → P(R) given by

U(t) =
{
w ∈ R : |ν1(t)− w| ≤ l(t)|y(t)− ȳ(t)|

}
.

Since the multivalued operator ν(t) = U(t) ∩ F (t, ȳt) is measurable, there
exists a function ν2(t) which is a measurable selection for ν. So, ν2(t) ∈
F (t, ȳt), and for each t ∈ J

|ν1(t)− ν2(t)| ≤ l(t)|yt − ȳt|, t ∈ J.
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Let us define for each t ∈ J ,

ρ2(t) =
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)α−1

ν2(s)
ds

s

+
1

Γ(α)

∫ t

tk

(
log

t

s

)α−1

ν2(s)
ds

s
+

∑
a<tk<t

Ik(ȳ(t
−
k )).

Then for each t ∈ J ,

|ρ1(t)− ρ2(t)| ≤
1

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)α−1

|ν1(s)− ν2(s)|
ds

s

+
1

Γ(α)

∫ t

tk

(
log

t

s

)α−1

|ν1(s)− ν2(s)|
ds

s

+
∑

a<tk<t

|Ik((y(t−k ))− Ik(ȳ(t
−
k ))|.

Thus

|ρ1(t)− ρ2(t)| ≤
l

Γ(α)

∑
a<tk<t

∫ tk

tk−1

(
log

tk
s

)α−1

|y(s)− ȳ(s)|ds
s

+
l

Γ(α)

∫ t

tk

(
log

t

s

)α−1

|y(s)− ȳ(s)|ds
s

+
∑

a<tk<t

l∗|y(t−k )− ȳ(t−k )|

≤
ml

(
log T

a

)α
Γ(α+ 1)

∥y − ȳ∥∞ +
l
(
log T

a

)α
Γ(α+ 1)

∥y − ȳ∥∞ +ml∗∥y − ȳ∥∞.

Therefore,

∥ρ1 − ρ2∥∞ ≤

[
(m+ 1)l

(
log T

a

)α
Γ(α+ 1)

+ml∗

]
∥y − ȳ∥∞.

For an analogous relation, obtained by interchanging the roles of y and ȳ, it
follows that

Hd(N(y), N(ȳ)) ≤

[
(m+ 1)l

(
log T

a

)α
Γ(α+ 1)

+ml∗

]
∥y − ȳ∥∞.

So, by (9), N is a contraction and thus, by Lemma 1, N has a fixed point y
which is solution to (1)–(3).

The proof is complete. □
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4. Example

We still consider the following fractional differential inclusion:

(10) CHDry(t) ∈ F (t, yt), for a.e. t ∈ J = [1, e], t ̸= 7

4
,

(11) ∆y|t= 7
4
=

1

8
y

(
7

4

)
,

(12) y(t) = ϕ(t), t ∈ J = [1− τ, e],

where CHDr is the Caputo-Hadammard fractional derivative F : [1, e]×R −→
P(R) is a multivalued map, P (R) is the family of all nonempty subsets of R
and φ ∈ C([1− τ, T ],R) with φ(a) = 0. Set

F (t, y) =
{
v ∈ R : f1(t, y) ≤ v ≤ f2(t, y), f1, f2 : [1− τ, e]× R −→ R

}
.

We assume that for each t ∈ J , f1(t, .) is lower semi-continuous (i.e., the set
{y ∈ R: f1(t, y) > µ} is open for each µ ∈ R), and assume that for each
t ∈ J , f2(t, .) is lower semi-continuous (i.e., the set {y ∈ R:f2(t, y) < µ} is
open for each µ ∈ R).

Hence the condition (H2) holds with

F (t, y) ≤ max(|f1(t, y), f2(t, y)|) ≤ p(t)ψ(|y|), t ∈ J, y ∈ R.

It is clear that F is compact and convex valued, and also upper semi-
continuous. Hence, the condition (H2) holds if there exists ψ∗ : [0,∞) →
(0,∞) continuous and nondecreasing such that

∥Ik(u)∥ ≤ ψ∗(|u|), for each u ∈ R.

Finally, we assume that condition (H2) there exists a number M > 0 such
that

M

|ϕ(a)|+ ψ(M)

(
log

T

a

)r

(m+ 1)pf

Γ(r + 1)
+mψ∗(M)

> 1,

where pf = supt∈J |p(t)|.
Then by Theorem 2 are satisfied, the problem (10)–(12) has at least one

solution on [1− τ, e].
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